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NATURAL FREQUENCIES AND MODE SHAPES OF
A FREE}FREE BEAM WITH LARGE END MASSES
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An analytical solution is presented for the natural frequencies, mode shapes and
orthogonality condition, of a free}free beam with large o!-set masses connected to the beam
by torsion springs. Results are given for a range of masses with various "xed orientations
and the validity of the method is con"rmed against established results for natural frequencies
of beams with "ve di!erent boundary conditions. The study lays the foundation for
investigations into the dynamics and vibration control of multi-link articulated systems such
as the Space Shuttle Remote Manipulator.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

In recent years considerable interest has been shown in the vibration and control of #exible
beams subject to rotational manoeuvres due to torque motors, producing acceleration/
deceleration sequences. Of particular interest is the e!ect of #exibility in robot arms, for
example, the Space Shuttle Remote Manipulator System (SRMS) and the Space Station
Mobile Manipulator System (MMS). These robots have basically two articulated #exible
links with various rotational degrees of freedom about the revolute joints.
Dynamic analysis of such systems has generally been carried out by assuming

approximate mode shapes for the separate links (for example reference [1]), taken as mode
shapes for uniform beams without end masses or rotary inertias. A literature search shows
that this approach has not been veri"ed by comparison with the exact solution based on the
classical Bernoulli beam theory.
This paper presents an exact solution for the natural frequencies and mode shapes of the

lower modes, of a single link with overhanging end masses and rotary inertias as shown in
Figure 1, as a prelude to studying the vibration of two-link articulated systems, such as used
in the SRMS. The analysis also includes torsion springs between the masses and the ends of
the beam to simulate joint #exibility.
Many authors have studied the e!ect of concentrated masses and springs on beam

natural frequencies with approximate or exact analytical methods but have rarely included
the mode shapes [2}10]. Few authors have considered the present problem of solving the
beam di!erential equation (1) with the boundary conditions relevant to Figure 1.
However, the authors of references [11, 12] have studied a similar problem for a ground-

based-single-link #exible robot, but with one end inertially pinned. An approximate
solution to a two-link Space Shuttle Manipulator was studied in reference [13] with torsion
spring restrained joints and "xed link con"gurations, for the "rst four natural frequencies of
the Shuttle}payload system.
2-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



Figure 1. Free}free beam with end masses and torsion springs.
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2. NATURAL FREQUENCY AND MODE SHAPE DETERMINATION

The free}free beam system is shown in Figure 1, with end masses M
�
and rotary inertias

I
��

about the ends of the beam. G
�
are the centres of masses, �

�
the torsional springs

sti!nesses, and EI, m
�
and ¸ the usual notation for the uniform beam.

The angles �
�
are constant for the undeformed system. Neglecting rotary inertia and

shear, the equation of beam vibration is [14]

EI yi� (x, t)#m
�
yK (x, t)"0. (1)

Using the method of separation of variables the solution to equation (1) yields the
eigenfunctions for the nth mode shape as

y
�
(x)"A sin(kx)#B cos(kx)#C sinh(kx)#D cosh(kx), (2)

where

k�"�
��

m
�

EI
(3)

and �
�
is the nth natural frequency.

The arbitrary constants are eliminated from equation (2) by means of the four boundary
conditions at x"0 and ¸.
Figure 2 shows the boundary condition geometry at x"0, where y (0) is the de#ection

and y�(0) the slope of the beam, and �
�
the "xed angle between O

�
G

�
and the undeformed

beam axis. Angle �
�
is the rotation of the mass relative to the beam due to the torsion spring

of sti!ness �
�
.

Since the springs are placed between the beam and the masses, moment equilibrium gives

�
�
"

EIy� (0)
�
�

, �
�
"

EI y� (¸)
�
�

. (4a, 4b)

Bending moment equilibrium: At x"0, the mass centre G
�

has an acceleration
uK"!y(0)�� perpendicular to the beam. Thus, the moment about O

�
due to this

acceleration is !M
�
g
�
�� y(0) cos �

�
. Similarly the rotary inertia of the mass produces

a moment about O
�
which is equal to !I

��
��[y� (0)!�

�
]. Hence,

EI y� (0)"!I
��

��[y�(0)!�
�
]!g

�
M

�
��[y (0)cos �

�
]. (5)

Shear force equilibrium: The total acceleration of G
�
is due to the transverse acceleration

��y(0) and the rotational acceleration g
�
[y�(0)!�

�
]��. Hence, resolving the second term



Figure 2. Boundary conditions at x"0.
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perpendicular to the beam, the total shear force is

EI y���(0)"M
�
��y(0)#g

�
M

�
��[y�(0)!�

�
]cos �

�
. (6)

Similarly at x"¸, bending moment and shear force equilibrium is

EIy� (¸)"I
��

��[y� (¸)!�
�
]#g

�
M

�
��[y (¸)cos �

�
], (7)

EIy���(¸)"!M
�
��y(¸)!g

�
M

�
��[y�(¸)!�

�
]cos �

�
. (8)

In the foregoing analysis, it is assumed that the angular rotations �
�
and y� (x) are small

compared with the "xed angles �
�
, which can therefore be assumed constant during

vibration.
Substituting into equations (5)}(8), the various derivatives of equation (2) and including

equations (4) gives

d
��

d
��

d
��

d
��

d
��

d
��

d
��

d
��

d
��

d
��

d
��

d
��

d
��

d
��

d
��

d
��

A

B

C

D

"0 (9)

and since A}D are generally non-zero, equation (9) only has a solution if

det[d
��
]"0. (10)

Implementation of the above procedure is excessively tedious and resort to computer
evaluation is made and programmes with the ability to handle symbolic calculations such
as MATLAB or MATHEMATICA are appropriate.
Using the notation C"cos(k¸), S"sin(k¸), Ch"cosh(k¸) and Sh"sinh(k¸) results in

the following expressions for the d
��
:

d
��

"d
��

"I
��
k��,

d
��

"!EI k�#

EI I
�
k���

�
�

#g
�
M

�
���

EI g
�
k�

�
�

#cos �
��,
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d
��

"EI k�!

EI I
�
k���

�
�

#g
�
M

�
���!

EI g
�
k�

�
�

#cos �
��,

d
��

"EIk�#g
�
kM

�
�� cos �

�
,

d
��

"M
�
���1#

EI g
�
k� cos �

�
�
�

�,
d
��

"!EI k�#g
�
kM

�
�� cos �

�
,

d
��

"M
�
���1!

EI g
�
k� cos �

�
�
�

�,

d
��

"EIk�S#g
�
M

�
�� cos �

�
S#I

���kC!

EIk�S

�
�
���,

d
��

"EIk�C#g
�
M

�
�� cos �

�
C!I

���kS#

EIk�C

�
�
���,

d
��

"g
�
M

�
�� cos �

�
Sh!EIk�Sh#I

���kCh#

EIk�Sh

�
�
���,

d
��

"g
�
M

�
�� cos �

�
Ch!EIk�Ch#I

���k Sh#

EIk�Ch

�
�
���,

d
��

"!EIk�C#M
�
��S#M

�
��g

�
cos �

��kC!

EIk�S

�
�
�,

d
��

"EIk�S#M
�
��C!M

�
��g

�
cos �

��kS#

EIk�C

�
�
�,

d
��

"EIk�Ch#M
�
��Sh#M

�
��g

�
cos �

��kCh#

EIk�Sh

�
�
�,

d
��

"EIk�Sh#M
�
��Ch#M

�
��g

�
cos �

��kSh#

EIk�Ch

�
�
�. (11)

3. NUMERICAL RESULTS

Figure 1 shows that a wide range of values forM
�
, I

��
, �

�
and g

�
are possible. For example

the single link could be an approximation to the two-link Shuttle RMS, with M
�
and

I
��

being the Shuttle mass and moment of inertia about the RMS base, and M
�
and

I
��

representing the payload. Thus, the natural frequencies could be determined for "xed
M

�
and I

��
, over a range of values of �

�
and �

�
. This would correspond to di!erent

quasi-stationary orientations of the Shuttle and payload relative to the arm during
a manoeuvre of the SRMS. Also the revolute joints O

�
and O

�
could be either free or locked

with "xed values of �
�
. The torsion springs represent the sti!nesses �

�
of the joints and gear

teeth in the drive gear boxes when the joints are locked.



TABLE 1

Natural frequencies of beam with zero end masses [15]

a
�

a
�

a
�

a
�

FF 22)3733 61)6728 120)9034 199)8594
PP 9)8696 39)4784 88)8264 157)9137
CC 22)3733 61)6728 120)9034 199)8594
CF 3)5160 22)3733 61)6728 120)9034
PF 15)4182 49)9649 104)2477 178)2697
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First consider the validation of equation (10) using the computed �
�
for uniform beams

with free}free (FF), pinned}pinned (PP), clamped}clamped (CC), clamped}free (CF) and
pinned}free (PF) end conditions, by comparing with the known analytical results obtained
by solving equation (1). For example [15] gives the natural frequencies.

�
�
"a

��
EI

m
�
¸�

(12)

where the a
�
are listed in Table 1 for the above cases.

To simulate these results using equation (10) we use �
�
"�

�
"0 and for the "ve cases the

following data. Note that if the joint angles play no role, for example, when the masses are
set equals to zero, �

�
and �

�
are set to say unity, and if pure revolute joints are needed, they

are set to a very small value, say 10��, but never equal to zero as they appear in some
denominators (equations (11)).

FF: M
�
"M

�
"I

��
"I

��
"g

�
"g

�
"0, �

�
"�

�
"1.

PP: M
�
"M

�
"10��, I

��
"I

��
"g

�
"g

�
"0, �

�
"�

�
"1.

CC: M
�
"M

�
"I

��
"I

��
"10��, g

�
"g

�
"0, �

�
"�

�
"10��.

CF: M
�
"I

��
"10��,M

�
"I

��
"g

�
"g

�
"0, �

�
"10�� and �

�
"1.

PF: M
�
"10��,M

�
"I

��
"I

��
"g

�
"g

�
"0, �

�
"�

�
"1.

The beam properties were taken from the averaged two-link SRMS data [16] as
m

�
"3)6 kg/m, EI"3�10� Nm�, ¸"14 m.
Comparison of the results from equation (10) with equation (12) gave exact agreement

within the limits of numerical accuracy. Identical results were also obtained by reversing the
data, writing M

�
, I

��
instead of M

�
, I

��
.

The lower natural frequencies, say �
�
and �

�
, were examined for typical values ofM

�
, I

��
,

�
�
and �

�
. Because of the almost in"nite range of values just a few were selected to illustrate

trends which will indicate how the �
�
depend on these parameters. This is important for

dynamic response analysis where it is necessary to know, for example, how �
�
and

�
�
in#uence the results. Also M

�
may be a rectangle with length a<b, with the beam

attachment as shown in Figure 3 or 4 where the e!ect of the overhang of the mass centre
G

�
and angle �

�
are parameters of interest. For example,M

�
could be the idealized mass of

the Shuttle and M
�

the idealized mass of a prismatic payload with uniform mass
distribution.
For con"guration (C1) in Figure 3 select, say, M

�
"70 000 kg, M

�
"10 000 kg,

I
��

"1)472�10	 kgm�, a"6 m, b"2 m, hence I
��

"1)275�10� kgm�, g
�
"14 m,



Figure 3. Con"guration C1.

Figure 4. Con"guration C2.

TABLE 2

Natural frequencies �
�
and �

�
(rad/s) for con,gurations

C1 and C2

C1 C2

�
�
(deg) �

�
�

�
�

�
�

�

0 0)394 4)432 0)457 3)771
10 0)395 4)270 0)457 3)752
20 0)398 3)881 0)459 3)697
30 0)402 3)431 0)461 3)614
40 0)409 3)022 0)465 3)515
50 0)417 2)686 0)469 3)410
60 0)428 2)422 0)474 3)308
70 0)441 2)219 0)480 3)217
80 0)457 2)068 0)486 3)142
90 0)475 1)959 0)493 3)084
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g
�
"3 m, �

�
"�

�
"10� Nm/rad, m

�
"3)6 kg/m, EI"3�10� Nm� and ¸"14 m. �

�
is

varied in the range 0}903 and �
�
and �

�
computed at 103 intervals.

For case (C2) of Figure 4 with smaller overhang, g
�
"1 m and I

��
"47 500 kgm�,

�
�
and �

�
are similarly evaluated for values of �

�
, but for practical reasons �

�
may not be

able to approach 03 in order to avoid contact with the beam. The natural frequencies are
given in Table 2.
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4. MODE SHAPES

The natural frequency �
�
is inserted in equation (9), where all the matrix elements are

now known. Letting, for example, A"1 and deleting any one of the four equations (10), the
remaining three equations can be solved for B, C and D.
Thus, knowing all the variables d

��
, A, B, C and D are inserted into equation (2), with the

known �
�
, which yields the nth mode shape y

�
(x). Figure 5 shows y

�
(x) for �

�
and �

�
as

listed in Table 2 for con"guration (C1) with �
�
"03.

To illustrate the e!ect of unequal or symmetric and asymmetric masses on the mode
shapes consider Figure 6 which shows a symmetric mass system.
The properties are M

�
"M

�
"10� kg, I

��
"I

��
"6�10� kgm�, g

�
"g

�
"1)5 m,

�
�
"�

�
"10�� Nm/rad, m

�
"3)9786 kg/m, EI"3�10� Nm�, ¸"14 m, �

�
"�

�
"903.

Then �
�
"2)669 rad/s and �

�
"4)902 rad/s.

The mode shapes corresponding to �
�
and �

�
are shown in Figure 7.

Figure 7 shows that in order to achieve force and moment equilibrium in the second
mode, the rotation of the two masses in the same direction is counteracted by a rigid-body
rotation of the whole system in the opposite direction. This is indicated by the straight
dashed line connecting the two beam ends. Note that in the symmetric mass case, this line
must pass through the nodal point N.
Now for comparison with Figure 7 take an asymmetric mass system with

M
�
, I

��
, g

�
, �

�
, �

�
, m

�
, EI, ¸, �

�
and �

�
as above but M

�
"5000 kg, I

��
"8333 kgm�,

g
�
"1 m. Then �

�
"3)321 rad/s and �

�
"10)429 rad/s. The corresponding mode shapes

are shown in Figure 8.
In Figure 8 the nodal pointN in mode 2, which was at the centre of the undeformed beam

axis in the symmetric mass case, has now moved towards the larger mass, as expected. As in
Figure 7, the straight dashed line in Figure 8 indicates the rigid-body rotation of the whole
system in the second mode to compensate for the rotation of the two masses in the opposite
direction.
Finally, it is noted that for further use in dynamic response analyses the mode shapes in

their present form are inconvenient, containing trigonometric and hyperbolic functions,
thus causing considerable computational burden. It is therefore proposed to use a standard
polynomial "t y(x)"��

�
�
a
�
x� to represent the exact mode shapes. Typical orders for

N are found to be 7 or 8 for the "rst few modes.
Figure 5. y
�
(x) and y

�
(x) for C1, �

�
"03.



Figure 6. Symmetric system.

Figure 7. y
�
(x) and y

�
(x) for symmetric mass system.

Figure 8. y
�
(x) and y

�
(x) for asymmetric mass system.
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5. ORTHOGONALITY OF NORMAL MODES

The orthogonality condition for a beam with non-zero bending moments and shear
forces at x"0 and ¸ has been derived in reference [17]. In the present paper, the bending
moments and shear forces are due to the rotational inertias, I

��
and I

��
, and the masses

M
�
and M

�
.

For the system in Figure 1 a hitherto unpublished orthogonality condition is derived and
incorporates the shear force and bending moment boundary conditions of equations (5)}(8).
The analysis is, however, more involved than [17] due to the presence of torsion springs
between the end masses and the beam.
For harmonic motion in mode r, equation (1) becomes

EIyi�
�
(x)!m

�
��

�
y
�
(x)"0, (13)
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which after multiplying by another mode shape y
�
(x) and integrating along the beam gives

�
�

�

[EI yi�
�
(x)!m

�
��

�
y
�
(x)]y

�
(x) dx"0. (14)

Integrating equation (14) by parts gives

[EI y���
�
(x)y

�
(x)]�

�
!�

�

�

EI y���
�
(x)y�

�
(x) dx!�

�

�

m
�
��

�
y
�
(x) y

�
(x) dx"0. (15)

A second integration by parts leads to

[EI y���
�
(x)y

�
(x)!EIy�

�
(x)y�

�
(x)]�

�

!�
�

�

EI y�
�
(x)y�

�
(x) dx!�

�

�

m
�
��

�
y
�
(x)y

�
(x) dx"0. (16)

Interchanging symbols r and s in equation (16) gives

[EI y���
�
(x)y

�
(x)!EIy�

�
(x)y�

�
(x)]�

�

!�
�

�

EI y�
�
(x)y�

�
(x) dx!�

�

�

m
�
��

�
y
�
(x)y

�
(x) dx"0. (17)

Subtracting equation (17) from (16) yields

(��
�
!��

�
) �

�

�

m
�
y
�
(x)y

�
(x) dx

#[EI y���
�
(x)y

�
(x)!EI y���

�
(x)y

�
(x)!EIy�

�
(x)y�

�
(x)#EIy�

�
(x)y�

�
(x)]�

�
"0. (18)

(a) (b) (c) (d)

The terms (a)}(d) in equation (18) are written in terms of the boundary conditions in
equations (5)}(8) as follows.
At x"¸, equations (8) and (18a) give

[!M
�
��

�
y
�
(¸)!g

�
M

�
��

�
(y�

�
(¸)!�

��
)cos �

�
]y

�
(¸). (19a)

From equation (18b)

[M
�
��

�
y
�
(¸)#g

�
M

�
��

�
(y�

�
(¸)!�

��
)cos �

�
]y

�
(¸). (19b)

From equations (18c) and (7)

[!I
��

��
�
(y�

�
(¸)!�

��
)!g

�
M

�
��

�
y
�
(¸) cos �

�
]y�

�
(¸). (19c)
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From equations (18d) and (7)

[!I
��

��
�
(y�

�
(¸)!�

��
)#g

�
M

�
��

�
y
�
(¸) cos �

�
]y�

�
(¸). (19d)

Equation (19c) is now written in the form

[!I
��

��
�
(y�

�
(¸)!�

��
)!g

�
M

�
��

�
y
�
(¸) cos �

�
][y�

�
(¸)!�

��
#�

��
]. (19e)

Substituting equation (7) for the "rst bracketed term in equation (19e) and using equation
(4b) for multiplication by �

��
in the second bracketed term gives

!I
��

��
�
(y�

�
(¸)!�

��
) (y�

�
(¸)!�

��
)

!g
�
M

�
��

�
y
�
(¸) cos�

�
(y�

�
(¸)!�

��
)!�

�
�
��

�
��
. (20a)

Similarly, equation (19d) becomes

I
��

��
�
(y�

�
(¸)!�

��
) (y�

�
(¸)!�

��
).

#g
�
M

�
��

�
y
�
(¸) cos�

�
(y�

�
(¸)!�

��
)#�

�
�
��

�
��
. (20b)

Finally, adding equations (19a), (19b), (20a) and (20b) and substituting in equation (18)
yields

(��
�
!��

�
)I

��
(¸)"(��

�
!��

�
)��

�

�

m
�
y
�
(x)y

�
(x) dx#M

�
y
�
(¸)y

�
(¸)

#I
��
(y�

�
(¸)!�

��
) (y�

�
(¸)!�

��
)#g

�
M

�
y
�
(¸) cos �

�
(y�

�
(¸)!�

��
)

#g
�
M

�
y
�
(¸) cos �

�
(y�

�
(¸)!�

��
)�"0. (21)

A similar result is obtained by replacing y
�
(¸), y

�
(¸), y�

�
(¸), y�

�
(¸), �

��
and �

��
by

y
�
(0), y

�
(0), y�

�
(0), y�

�
(0), �

��
and �

��
to give I

��
(0). The orthogonality condition for modes

r and s is hence

I
��
(0)#I

��
(¸)"0 (22)

for rOs. For r"s the generalized mass is given by equation (21) as

I
��
(0)#I

��
(¸)"M

�
. (23)

Equation (1) is reduced to modal form by substituting

y (x, t)"
�
�
�
�

y
�
(x)q

�
(t) (24)

and using equations (22) and (23) [14].
In equation (21) the modal rotations �

��
and �

��
are calculated from equation (4) thus for

mode s

�
��

"

EIy�
�
(0)

�
�

and �
��

"

EIy�
�
(0)

�
�

, (25)

where y�
�
(x) is obtained from equation (2) with known values of A}D.
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6. CONCLUSIONS

A unique analytical solution is presented for the natural frequencies, mode shapes and
orthogonality conditions of a single free}free beam with large o!-set masses connected to
the ends of the beam by torsion spring restrained revolute joints.
The "rst two natural frequencies have been determined for a range of "xed end mass

orientations and the method has been validated against known results for the "rst four
natural frequencies of a beam without end masses.
The study provides a foundation for the dynamic response analysis of single- and

multi-link #exible articulated space robotic systems which are currently being studied by
the authors, with application to the Space Shuttle Remote Manipulator and Space Station
Mobile Manipulator Systems.
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